Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney

14Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the rapid development of nanotechnology, engineered nanomaterials (ENMs) have been applied in many fields, such as food industry, biomedicine, and so on. However, the study on the health and safety implications of ENMs is still insufficient. Previous studies have shown that nanoparticles under acute or chronic exposure could be transported and accumulated in various organs and tissues, resulting in adverse effects or systemic toxicity. Among these, the kidney is one of the main organs that exposed ENMs will target through different routes. One of the important functions of the kidney is to discharge metabolic wastes and exogenous substances from the blood circulation of the whole body. During ENM exposure, the kidney may become vulnerable to toxicity. Studies have suggested that nanoparticles exposed to the kidney could provoke glomerular swelling, basilar membrane thickening, degeneration, and necrosis of renal tubular cells. These adverse effects of nanoparticles on the kidney may be related to their induced oxidative stress, inflammation, autophagy, DNA damage, and ER stress. This review aims to examine current studies on ENM-induced nephrotoxicity, with the focus on elucidating the potential molecular mechanisms of nanoparticle-induced toxicity on the kidney, which will further facilitate the safer design of ENMs and their applications.

Cite

CITATION STYLE

APA

Zhao, H., Li, L., Zhan, H., Chu, Y., & Sun, B. (2019). Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney. Journal of Nanomaterials. Hindawi Limited. https://doi.org/10.1155/2019/2954853

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free