A real-time extraction of active and reactive current using microcontrollers for a multipulse STATCOM

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

In power transmission and distribution systems, the design of a compensator that adjusts the power factor without causing additional power losses requires the determination of the reactive current components that are going to be supplied into the system. In this study, the determination of the active and reactive current components is achieved via the use of the nonactive power theory and a microcontroller-based control system. The control system has been implemented with low-cost 16-bit microcontrollers. This system was used to control a 3-phase, 12-pulse laboratory-size prototype of a static synchronous compensator (STATCOM) with the structure of a voltage source converter. Verification of the STATCOM and its control circuit were examined via experiments and simulation studies conducted on a singlemachine infinite-bus power transmission system. The simulation models for the power and control systems were built by employing the PSCAD/EMTDC program's C programming interface and the graphics-based models in its model library. The experimental results are compared with the results obtained from the PSCAD/EMTDC simulation program. © Tübi̇tak..

Cite

CITATION STYLE

APA

Anadol, M. A., Aydin, M., & Yalcinoz, T. (2013). A real-time extraction of active and reactive current using microcontrollers for a multipulse STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 21(4), 1044–1060. https://doi.org/10.3906/elk-1106-23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free