Uranium carbide fibers with nano-grains as starting materials for ISOL targets

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

This paper presents an experimental study about the preparation, by electrospinning, of uranium carbide fibers with nanometric grain size. Viscous solutions of cellulose acetate and uranyl salts (acetate, acetylacetonate, and formate) on acetic acid and 2,4-pentanedione, adjusted to three different polymer concentrations, 10, 12.5, and 15 weight %, were used for electrospinning. Good quality precursor fibers were obtained from solutions with a 15% cellulose acetate concentration, the best ones being produced from the uranyl acetate solution. As-spun precursor fibers were then decomposed by slow heating until 823 K under argon, resulting in a mixture of nano-grained UO2 and C fibers. A last carboreduction was then carried out under vacuum at 2073 K for 2 h. The final material displayed UC2−y as the major phase, with grain sizes in the 4 nm–10 nm range. UO2+x was still present in moderate concentrations (~30 vol.%). This is due to uncomplete carboreduction that can be explained by the fiber morphology, limiting the effective contact between C and UO2 grains.

Cite

CITATION STYLE

APA

Chowdhury, S., Maria, L., Cruz, A., Manara, D., Dieste-Blanco, O., Stora, T., & Gonçalves, A. P. (2020). Uranium carbide fibers with nano-grains as starting materials for ISOL targets. Nanomaterials, 10(12), 1–12. https://doi.org/10.3390/nano10122458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free