Isotopy classes for 3-periodic net embeddings

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. Periodic isotopy classifications are obtained for various families of embedded nets with small quotient graphs. The 25 periodic isotopy classes of depth-1 embedded nets with a single-vertex quotient graph are enumerated. Additionally, a classification is given of embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, as well as demonstrations of their maximal symmetry periodic isotopes. The methodology of linear graph knots on the flat 3-torus [0,1)3 is introduced. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.

Cite

CITATION STYLE

APA

Power, S. C., Baburin, I. A., & Proserpio, D. M. (2020). Isotopy classes for 3-periodic net embeddings. Acta Crystallographica Section A: Foundations and Advances, 76, 275–301. https://doi.org/10.1107/S2053273320000625

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free