Au-doped ZnO–samarium nitrate (Sm) nanoparticles with fixed concentrations of Sm (1 wt %) and various concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) were prepared and used as photoelectrodes to enhance the photovoltaic efficiency of dye-sensitized solar cells (DSSCs). The cell fabricated with 1.5 wt % of Au-doped ZnO–Sm nanoparticles film achieved an optimal efficiency of 4.35%, which is about 76% higher than that of 0.0 wt % of Au-doped ZnO–Sm-based cell (2.47%). This increase might be due to the formation of a blocking layer at the ZnO–Sm/Au interface, which inhibits the recombination of electrons. This increase may also be attributed to the addition of rare-earth ions in ZnO to enhance the non-absorbable wavelength region of light via up/down-conversion of near-infrared and ultraviolet radiations to visible emission and reduce the recombination loss of electron in the cell. The efficiency of cells may be increased by the blocking layer and up/down-conversion process and thus promote the overall performance of the cells. This work indicates that Au-doped ZnO–Sm nanoparticle films have the potential to increase the performance of DSSCs.
CITATION STYLE
Saleem, M., Irshad, K., Rehman, S. U., Sufyan Javed, M., Hasan, M. A., Ali, H. M., … Islam, S. (2021). Characteristics and photovoltaic applications of Au-doped ZnO–sm Nanoparticle films. Nanomaterials, 11(3), 1–14. https://doi.org/10.3390/nano11030702
Mendeley helps you to discover research relevant for your work.