Col4a3 expression in asthmatic epithelium depends on intronic methylation and znf263 binding

8Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Background: Reduction of COL4A3, one of the six isoforms of collagen 4, in asthmatic airways results in increased inflammation and angiogenesis, implicating it as a central part of asthma pathogenesis. However, to date, the path underlying these diminished COL4A3 levels has been elusive. This study investigated a possible mechanism underlying the reduction of COL4A3 expression. Methods: Bronchial biopsies of 76 patients with asthma and 83 controls were subjected to RNA-sequencing and DNA methylation bead arrays to identify expression and methylation changes. The binding of ZNF263 was analysed by chromatin-immunoprecipitation sequencing coupled with quantitative (q)PCR. Effects of ZNF263 silencing, using small interfering RNA, on the COL4A3 expression were studied using qPCR. Results: COL4A3 expression was significantly reduced in bronchial biopsies compared to healthy controls, whereas DNA methylation levels at cg11797365 were increased. COL4A3 expression levels were significantly low in asthmatics without inhaled corticosteroid (ICS) use, whereas the expression was not statistically different between asthmatics using ICS and controls. Methylation levels at cg11797365 in vitro were increased upon consecutive rhinovirus infections. Conclusion: Our data indicate an epigenetic modification as a contributing factor for the loss of COL4A3 expression in asthmatic airway epithelium.

Cite

CITATION STYLE

APA

Nemani, S. S. P., Vermeulen, C. J., Pech, M., Faiz, A., Oliver, B. G. G., van den Berge, M., … Weckmann, M. (2021). Col4a3 expression in asthmatic epithelium depends on intronic methylation and znf263 binding. ERJ Open Research, 7(2). https://doi.org/10.1183/23120541.00802-2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free