Development of an early alert model for pandemic situations in Germany

6Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The COVID-19 pandemic has pointed out the need for new technical approaches to increase the preparedness of healthcare systems. One important measure is to develop innovative early warning systems. Along those lines, we first compiled a corpus of relevant COVID-19 related symptoms with the help of a disease ontology, text mining and statistical analysis. Subsequently, we applied statistical and machine learning (ML) techniques to time series data of symptom related Google searches and tweets spanning the time period from March 2020 to June 2022. In conclusion, we found that a long-short-term memory (LSTM) jointly trained on COVID-19 symptoms related Google Trends and Twitter data was able to accurately forecast up-trends in classical surveillance data (confirmed cases and hospitalization rates) 14 days ahead. In both cases, F1 scores were above 98% and 97%, respectively, hence demonstrating the potential of using digital traces for building an early alert system for pandemics in Germany.

Cite

CITATION STYLE

APA

Wang, D., Lentzen, M., Botz, J., Valderrama, D., Deplante, L., Perrio, J., … Fröhlich, H. (2023). Development of an early alert model for pandemic situations in Germany. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-48096-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free