Integrative prescreening in analysis of multiple cancer genomic studies

6Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Background: In high throughput cancer genomic studies, results from the analysis of single datasets often suffer from a lack of reproducibility because of small sample sizes. Integrative analysis can effectively pool and analyze multiple datasets and provides a cost effective way to improve reproducibility. In integrative analysis, simultaneously analyzing all genes profiled may incur high computational cost. A computationally affordable remedy is prescreening, which fits marginal models, can be conducted in a parallel manner, and has low computational cost.Results: An integrative prescreening approach is developed for the analysis of multiple cancer genomic datasets. Simulation shows that the proposed integrative prescreening has better performance than alternatives, particularly including prescreening with individual datasets, an intensity approach and meta-analysis. We also analyze multiple microarray gene profiling studies on liver and pancreatic cancers using the proposed approach.Conclusions: The proposed integrative prescreening provides an effective way to reduce the dimensionality in cancer genomic studies. It can be coupled with existing analysis methods to identify cancer markers. © 2012 Song et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Song, R., Huang, J., & Ma, S. (2012). Integrative prescreening in analysis of multiple cancer genomic studies. BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free