Glyphosate, which has been widely reported to be a toxic pollutant, is often present at trace amounts in the environment. In this study, a novel copper-aluminum metal hydroxide doped graphene nanoprobe (labeled as CuAl–LDH/Gr NC) was first developed to construct a non-enzymatic electrochemical sensor for detection trace glyphosate. The characterization results showed that the synthesized CuAl–LDH had a high-crystallinity flowered structure, abundant metallic bands and an intercalated functional group. After mixed with Gr, the nanocomposites provided a larger surface area and better conductivity. The as-prepared CuAl–LDH/Gr NC dramatically improved the enrichment capability for glyphosate to realize the stripping voltammetry detection. The logarithmic linear detection range of the sensor was found to be 2.96 × 10−9–1.18 × 10−6 mol L−1 with the detection limit of 1 × 10−9 mol L−1 with excellent repeatability, good stability and anti-interference ability. Further, the sensor achieved satisfactory recovery rates in spiked surface water, ranging from 97.64% to 108.08%, demonstrating great accuracy and practicality.
CITATION STYLE
Zhang, C., Liang, X., Lu, Y., Li, H., & Xu, X. (2020). Performance of CUAL-LDH/GR nanocomposite-based electrochemical sensor with regard to trace glyphosate detection in water. Sensors (Switzerland), 20(15), 1–16. https://doi.org/10.3390/s20154146
Mendeley helps you to discover research relevant for your work.