Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats

30Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The present study aimed to investigate the effect of the royal jelly (RJ) on hepatotoxicity induced by molybdenum nanoparticles (MoO3-NPs), cadmium chloride (CdCl2), or their combination in male rats at biochemical, inflammation, immune response, histological, and ultrastructural levels. The physicochemical properties of MoO3-NPs have been characterized, as well as their ultrastructural organization. A rat experimental model was employed to assess the liver toxicity of MoO3-NPs, even in combination with CdCl2. Different cellular studies indicate divergent mechanisms, from increased reactive oxygen species production to antioxidative damage and cytoprotective activity. Seventy male rats were allocated to groups: (i) control; (ii) MoO3-NPs (500 mg/kg); (iii) CdCl2 (6.5 mg/kg); (iv) RJ (85 mg/kg diluted in saline); (v) MoO3-NPs followed by RJ (30 min after the MoO3-NPs dose); (vi) CdCl2 followed by RJ; and (vii) a combination of MoO3-NPs and CdCl2, followed by RJ, for a total of 30 successive days. Hepatic functions, lipid profile, inflammation marker (CRP), antioxidant biomarkers (SOD, CAT, GPx, and MDA), and genotoxicity were examined. Histological changes, an immunological marker for caspase-3, and transmission electron microscope variations in the liver were also investigated to indicate liver status. The results showed that RJ alleviated the hepatotoxicity of MoO3-NPs and/or CdCl2 by improving all hepatic vitality markers. In conclusion, the RJ was more potent and effective as an antioxidant over the oxidative damage induced by the combination of MoO3-NPs and CdCl2.

Cite

CITATION STYLE

APA

Hamza, R. Z., Al-Eisa, R. A., & El-Shenawy, N. S. (2022). Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats. Biology, 11(3). https://doi.org/10.3390/biology11030450

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free