Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen

429Citations
Citations of this article
145Readers
Mendeley users who have this article in their library.

Abstract

We used intravital microscopy to observe the formation of platelet plugs in ferric chloride-injured arterioles of live mice. With this model, we evaluated thrombus growth in mice lacking von Wille-brand factor (vWF) and fibrinogen (Fg), the two key ligands known to mediate platelet adhesion and aggregation. In vWF(-/-) mice, despite the presence of arterial shear, delayed platelet adhesion occurred and stable thrombi formed. In many mice, a persisting high-shear channel never occluded. Abundant thrombi formed in Fg(-/-) mice, but they detached from the subendothelium, which ultimately caused downstream occlusion in all cases. Surprisingly, mice deficient in both vWF and Fg successfully formed thrombi with properties characteristic of both mutations, leading to vessel occlusion in the majority of vessels. Platelets of these doubly deficient mice specifically accumulated fibronectin in their α-granules, suggesting that fibronectin could be the ligand supporting the platelet aggregation.

Cite

CITATION STYLE

APA

Ni, H., Denis, C. V., Subbarao, S., Degen, J. L., Sato, T. N., Hynes, R. O., & Wagner, D. D. (2000). Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. Journal of Clinical Investigation, 106(3), 385–392. https://doi.org/10.1172/JCI9896

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free