Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe0.6 Se0.4(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy ∈F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.
CITATION STYLE
Okazaki, K., Ito, Y., Ota, Y., Kotani, Y., Shimojima, T., Kiss, T., … Shin, S. (2014). Superconductivity in an electron band just above the Fermi level: Possible route to BCS-BEC superconductivity. Scientific Reports, 4. https://doi.org/10.1038/srep04109
Mendeley helps you to discover research relevant for your work.