Opposition-based learning for self-adaptive control parameters in differential evolution for optimal mechanism design

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In recent decades, new optimization algorithms have attracted much attention from researchers in both gradient- and evolution-based optimal methods. Many strategy techniques are employed to enhance the effectiveness of optimal methods. One of the newest techniques is opposition-based learning (OBL), which shows more power in enhancing various optimization methods. This research presents a new edition of the Differential Evolution (DE) algorithm in which the OBL technique is applied to investigate the opposite point of each candidate of self-adaptive control parameters. In comparison with conventional optimal methods, the proposed method is used to solve benchmark-test optimal problems and applied to real optimizations. Simulation results show the effectiveness and improvement compared with some reference methodologies in terms of the convergence speed and stability of optimal results.

Cite

CITATION STYLE

APA

Bui, T., Nguyen, T., & Hasegawa, H. (2019). Opposition-based learning for self-adaptive control parameters in differential evolution for optimal mechanism design. Journal of Advanced Mechanical Design, Systems and Manufacturing, 13(4). https://doi.org/10.1299/jamdsm.2019jamdsm0072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free