To protect ecologies and the environment by preventing floods, analysis of the impact of climate change on water requires a tool capable of considering the rainfall-runoff processes on a small scale, for example, 10 m. As has been shown previously, hydrologic models are good at simulating rainfall-runoff processes on a large scale, e.g., over several hundred km2, while hydraulic models are more advantageous for applications on smaller scales. In order to take advantages of these two types of models, this paper coupled a hydrologic model, the Xinanjing model (XAJ), with a hydraulic model, the Graphics Processing Unit (GPU)-accelerated high-performance integrated hydraulic modelling system (HiPIMS). The study was completed in the Misai basin (797 km2), located in Zhejiang Province, China. The coupled XAJ-HiPIMS model was validated against observed flood events. The simulated results agree well with the data observed at the basin outlet. The study proves that a coupled hydrologic and hydraulic model is capable of providing flood information on a small scale for a large basin and shows the potential of the research.
CITATION STYLE
Wang, Y., & Yang, X. (2020). A coupled hydrologic-hydraulic model (XAJ-HiPIMS) for flood simulation. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051288
Mendeley helps you to discover research relevant for your work.