Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal

66Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phenelzine (PZ) is a scavenger of the lipid peroxidation (LP)-derived reactive aldehyde 4-hydroxynonenal (4-HNE) due to its hydrazine functional group, which can covalently react with 4-HNE. In this study, we first examined the ability of PZ to prevent the respiratory depressant effects of 4-HNE on normal isolated brain cortical mitochondria. Second, in rats subjected to controlled cortical impact traumatic brain injury (CCI-TBI), we evaluated PZ (10 mg/kg subcutaneously at 15 minutes after CCI-TBI) to attenuate 3-hour post-TBI mitochondrial respiratory dysfunction, and in separate animals, to improve cortical tissue sparing at 14 days. While 4-HNE exposure inhibited mitochondrial complex I and II respiration in a concentration-dependent manner, pretreatment with equimolar concentrations of PZ antagonized these effects. Western blot analysis demonstrated a PZ decrease in 4-HNE in mitochondrial proteins. Mitochondria isolated from peri-contusional brain tissue of CCI-TBI rats treated with vehicle at 15 minutes after injury showed a 37% decrease in the respiratory control ratio (RCR) relative to noninjured mitochondria. In PZ-treated rats, RCR suppression was prevented (P<0.05 versus vehicle). In another cohort, PZ administration increased spared cortical tissue from 86% to 97% (P<0.03). These results suggest that PZ's neuroprotective effect is due to mitochondrial protection by scavenging of LP-derived 4-HNE. © 2013 ISCBFM All rights reserved.

Cite

CITATION STYLE

APA

Singh, I. N., Gilmer, L. K., Miller, D. M., Cebak, J. E., Wang, J. A., & Hall, E. D. (2013). Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. Journal of Cerebral Blood Flow and Metabolism, 33(4), 593–599. https://doi.org/10.1038/jcbfm.2012.211

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free