Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

  • Benned-Jensen T
  • Smethurst C
  • Holst P
  • et al.
N/ACitations
Citations of this article
4Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we describe an inverse agonist, GSK682753A, which selectively inhibited the constitutive activity of EBI2 with high potency and efficacy. In cAMP-response element-binding protein-based reporter and guanosine 5'-3-O-(thio)triphosphate (GTPγS) binding assays, the potency of this compound was 2.6-53.6 nm, and its inhibitory efficacy was 75%. In addition, we show that EBI2 constitutively activated extracellular signal-regulated kinase (ERK) in a pertussis toxin-insensitive manner. Intriguingly, GSK682753A inhibited ERK phosphorylation, GTPγS binding, and cAMP-response element-binding protein activation with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases. Importantly, the suppression was of much higher potency (32-fold) in WT or EBI2-overexpressing B cells compared with EBI2-deficient counterparts. Finally, we screened GSK682753A against an EBI2 mutant library to determine putative molecular binding determinants in EBI2. We identified Phe(111) at position III:08/3.32 as being crucial for GSK682753A inverse agonism because Ala substitution resulted in a >500-fold decrease in IC(50). In conclusion, we present the first ligand targeting EBI2. In turn, this molecule provides a useful tool for further characterization of EBI2 as well as serving as a potent lead compound.

Cite

CITATION STYLE

APA

Benned-Jensen, T., Smethurst, C., Holst, P. J., Page, K. R., Sauls, H., Sivertsen, B., … Rosenkilde, M. M. (2011). Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2. Journal of Biological Chemistry, 286(33), 29292–29302. https://doi.org/10.1074/jbc.m110.196345

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free