Characterizing the environments of supernovae with MUSE

101Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present a statistical analysis of the environments of 11 supernovae (SNe) which occurred in six nearby galaxies (z ≲ 0.016). All galaxies were observed with MUSE, the high spatial resolution integral-field spectrograph mounted to the 8 m VLT UT4. These data enable us to map the full spatial extent of host galaxies up to ~3 effective radii. In this way, not only can one characterize the specific host environment of each SN, one can compare their properties with stellar populations within the full range of other environments within the host. We present a method that consists of selecting all HII regions found within host galaxies from 2D extinction-corrected Hα emission maps. These regions are then characterized in terms of their Hα equivalent widths, star formation rates and oxygen abundances. Identifying HII regions spatially coincident with SN explosion sites, we are thus able to determine where within the distributions of host galaxy e.g. metallicities and ages each SN is found, thus providing new constraints on SN progenitor properties. This initial pilot study using MUSE opens the way for a revolution in SN environment studies where we are now able to study multiple environment SN progenitor dependencies using a single instrument and single pointing.

Cite

CITATION STYLE

APA

Galbany, L., Anderson, J. P., Rosales-Ortega, F. F., Kuncarayakti, H., Krühler, T., Sánchez, S. F., … Moral, V. (2016). Characterizing the environments of supernovae with MUSE. Monthly Notices of the Royal Astronomical Society, 455(4), 4087–4099. https://doi.org/10.1093/mnras/stv2620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free