Abstract
Lipopolysaccharide (LPS) induces expression of tumor necrosis factor α (TNFα) and other pro-inflammatory cytokines in macrophages. Following its induction, TNFα gene transcription is rapidly attenuated, in part due to the accumulation of NF-κ p50 homodimers that bind to three κB sites in the TNFα promoter. Here we have investigated the inhibitory role of BCL-3, an IκB-like protein that interacts exclusively with p50 and p52 homodimers. BCL-3 was induced by LPS with delayed kinetics and was associated with p50 in the nucleus. Forced expression of BCL-3 suppressed LPS-induced transcription from the TNFα promoter and inhibited two artificial promoters composed of TNFα κB sites that preferentially bind p50 dimers. BCL-3-mediated repression was reversed by trichostatin A and was enhanced by overexpression of HDAC-1, indicating that transcriptional attenuation involves recruitment of histone deacetylase. Analysis of macrophages from p50 and BCL-3 knock-out mice revealed that both transcription factors negatively regulate TNFα expression and that BCL-3 inhibits IL-1α and IL-1β. In contrast, induction of the anti-inflammatory cytokine IL-10 was reduced in BCL-3 null macrophages. BCL-3 was not required for the production of p50 homodimers but BCL-3 expression was severely diminished in p50-deficient cells. Together, these findings indicate that p50 and BCL-3 function as anti-inflammatory regulators in macrophages by attenuating transcription of pro-inflammatory cytokines and activating IL-10 expression.
Cite
CITATION STYLE
Wessells, J., Baer, M., Young, H. A., Claudio, E., Brown, K., Siebenlist, U., & Johnson, P. F. (2004). BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. Journal of Biological Chemistry, 279(48), 49995–50003. https://doi.org/10.1074/jbc.M404246200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.