Advancing RNA structural probing techniques with next-generation sequencing has generated demands for complementary computational tools to robustly extract RNA structural information amidst sampling noise and variability. We present diffBUM-HMM, a noise-aware model that enables accurate detection of RNA flexibility and conformational changes from high-throughput RNA structure-probing data. diffBUM-HMM is widely compatible, accounting for sampling variation and sequence coverage biases, and displays higher sensitivity than existing methods while robust against false positives. Our analyses of datasets generated with a variety of RNA probing chemistries demonstrate the value of diffBUM-HMM for quantitatively detecting RNA structural changes and RNA-binding protein binding sites.
CITATION STYLE
Marangio, P., Law, K. Y. T., Sanguinetti, G., & Granneman, S. (2021). diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data. Genome Biology, 22(1). https://doi.org/10.1186/s13059-021-02379-y
Mendeley helps you to discover research relevant for your work.