Nano-Engineering of Molecular Interactions in Organic Electro-Optic Materials

  • J. S
  • H. B
  • R. L
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Integrated (multi-scale) quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination of the molecular order parameters, lattice dimensionality, and nanoscale viscoelasticity properties of these new soft matter materials and have facilitated comparison of theoretically-predicted structures and thermodynamic properties with experimentally-defined structures and properties. New processing protocols have permitted further enhancement of material properties and have facilitated the fabrication of complex device structures. The integration of organic electro-optic materials into silicon photonic, plasmonic, and metamaterial device architectures has led to impressive new performance metrics for a variety of technological applications.

Cite

CITATION STYLE

APA

J., S., H., B., & R., L. (2012). Nano-Engineering of Molecular Interactions in Organic Electro-Optic Materials. In Molecular Interactions. InTech. https://doi.org/10.5772/37803

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free