Combination Therapy of Placenta-Derived Mesenchymal Stem Cells with WKYMVm Promotes Hepatic Function in a Rat Model with Hepatic Disease via Vascular Remodeling

6Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Changes in the structure and function of blood vessels are important factors that play a primary role in regeneration of injured organs. WKYMVm has been reported as a therapeutic factor that promotes the migration and proliferation of angiogenic cells. Additionally, we previously demonstrated that placenta-derived mesenchymal stem cells (PD-MSCs) induce hepatic regeneration in hepatic failure via antifibrotic effects. Therefore, our objectives were to analyze the combination effect of PD-MSCs and WKYMVm in a rat model with bile duct ligation (BDL) and evaluate their therapeutic mechanism. To analyze the anti-fibrotic and angiogenic effects on liver regeneration, it was analyzed using ELISA, qRT-PCR, Western blot, immunofluorescence, and immunohistochemistry. Collagen accumulation was significantly decreased in PD-MSCs with the WKYMVm combination (Tx+WK) group compared with the nontransplantation (NTx) and PD-MSC-transplanted (Tx) group (p < 0.05). Furthermore, the combination of PD-MSCs with WKYMVm significantly promoted hepatic function by increasing hepatocyte proliferation and albumin as well as angiogenesis by activated FPR2 signaling (p < 0.05). The combination therapy of PD-MSCs with WKYMVm could be an efficient treatment in hepatic diseases via vascular remodeling. Therefore, the combination therapy of PD-MSCs with WKYMVm could be a new therapeutic strategy in degenerative medicine.

Cite

CITATION STYLE

APA

Jun, J. H., Park, S., Kim, J. Y., Lim, J. Y., Park, G. T., Kim, J. H., & Kim, G. J. (2022). Combination Therapy of Placenta-Derived Mesenchymal Stem Cells with WKYMVm Promotes Hepatic Function in a Rat Model with Hepatic Disease via Vascular Remodeling. Cells, 11(2). https://doi.org/10.3390/cells11020232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free