Abstract
The aim of this study was to investigate the ability of hinokitiol to inhibit the formation of Candida biofilms. Biofilm inhibition was evaluated by quantification of the biofilm metabolic activity with XTT assay. Hinokitiol efficiently prevented biofilm formation in both fluconazole-susceptible and fluconazole-resistant strains of Candida species. We determined the expression levels of specific genes previously implicated in biofilm development of C. albicans cells by realtime RT-PCR. The expression levels of genes associated with adhesion process, HWP1 and ALS3, were downregulated by hinokitiol. Transcript levels of UME6 and HGC1, responsible for long-Term hyphal maintenance, were also decreased by hinokitiol. The expression level of CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA was suppressed by hinokitiol. Its upstream general regulator RAS1 was also suppressed by hinokitiol. These results indicate that hinokitiol may have therapeutic potential in the treatment and prevention of biofilm-Associated Candida infections.
Cite
CITATION STYLE
Kim, D. J., Lee, M. W., Choi, J. S., Lee, S. G., Park, J. Y., & Kim, S. W. (2017). Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171244
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.