Photoemission sources and beam blankers for ultrafast electron microscopy

33Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Observing atomic motions as they occur is the dream goal of ultrafast electron microscopy (UEM). Great progress has been made so far thanks to the efforts of many scientists in developing the photoemission sources and beam blankers needed to create short pulses of electrons for the UEM experiments. While details on these setups have typically been reported, a systematic overview of methods used to obtain a pulsed beam and a comparison of relevant source parameters have not yet been conducted. In this report, we outline the basic requirements and parameters that are important for UEM. Different types of imaging modes in UEM are analyzed and summarized. After reviewing and analyzing the different kinds of photoemission sources and beam blankers that have been reported in the literature, we estimate the reduced brightness for all the photoemission sources reviewed and compare this to the brightness in the continuous and blanked beams. As for the problem of pulse broadening caused by the repulsive forces between electrons, four main methods available to mitigate the dispersion are summarized. We anticipate that the analysis and conclusions provided in this manuscript will be instructive for designing an UEM setup and could thus push the further development of UEM.

Cite

CITATION STYLE

APA

Zhang, L., Hoogenboom, J. P., Cook, B., & Kruit, P. (2019). Photoemission sources and beam blankers for ultrafast electron microscopy. Structural Dynamics, 6(5). https://doi.org/10.1063/1.5117058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free