Long-distance movement of mineral deficiency-responsive mRNAs in Nicotiana Benthamiana/tomato heterografts

10Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the adaptive alterations in roots, in response to mineral deficiency. mRNAs are one group of molecules with systemic signaling functions in response to intrinsic and environmental cues; however, the importance of shoot-to-root mobile mRNAs stimulated by low mineral levels is not fully understood. In this study, we established a Nicotiana benthamiana/tomato heterograft system to identify shoot-to-root mobile mRNAs that are produced in response to low N, P or Fe. Multiple long-distance mobile mRNAs were identified to be associated with low mineral levels and a few of them may play important roles in hormonal metabolism and root architecture alteration. A comparison of the mobile mRNAs from our study with those identified from previous studies showed that very few transcripts are conserved among different species.

Cite

CITATION STYLE

APA

Xia, C., Huang, J., Lan, H., & Zhang, C. (2020). Long-distance movement of mineral deficiency-responsive mRNAs in Nicotiana Benthamiana/tomato heterografts. Plants, 9(7), 1–11. https://doi.org/10.3390/plants9070876

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free