Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis

53Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3β in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3β and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE-deficient mice, demonstrating that CysC deficiency (CysC−/−) in these mice results in reduction of Atg5 and LC3β levels and induction of apoptosis. Third, macrophages isolated from CysC−/− mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7-oxysterol-mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol-mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE-deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.

Cite

CITATION STYLE

APA

Li, W., Sultana, N., Siraj, N., Ward, L. J., Pawlik, M., Levy, E., … Yuan, X. M. (2016). Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. Journal of Cellular and Molecular Medicine, 20(9), 1664–1672. https://doi.org/10.1111/jcmm.12859

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free