Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS2 and monolayer graphene

56Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Van der Waals (vdW) stacking of two-dimensional (2D) materials to create artificial structures has enabled remarkable discoveries and novel properties in fundamental physics. Here, we report that vdW stacking of centrosymmetric 2D materials, e.g., bilayer MoS2 (2LM) and monolayer graphene (1LG), could support remarkable second-harmonic generation (SHG). The required centrosymmetry breaking for second-order hyperpolarizability arises from the interlayer charge transfer between 2LM and 1LG and the imbalanced charge distribution in 2LM, which are verified by first-principles calculations, Raman spectroscopy, and polarization-resolved SHG. The strength of SHG from 2LM/1LG is of the same order of magnitude as that from the monolayer MoS2, which is well recognized with strong second-order nonlinearity. The emergent SHG reveals that the interlayer charge transfer can effectively modify the symmetry and nonlinear optical properties of 2D heterostructures. It also indicates the great opportunity of SHG spectroscopy for characterizing interlayer coupling in vdW heterostructures.

Cite

CITATION STYLE

APA

Zhang, M., Han, N., Zhang, J., Wang, J., Chen, X., Zhao, J., & Gan, X. (2023). Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS2 and monolayer graphene. Science Advances, 9(11). https://doi.org/10.1126/sciadv.adf4571

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free