We examine the relationship between the mass and x-ray gas temperature of galaxy clusters using data drawn from the literature. Simple theoretical arguments suggest that the mass of a cluster is related to the x-ray temperature as $M \propto T_x^{3/2}$. Virial theorem mass estimates based on cluster galaxy velocity dispersions seem to be accurately described by this scaling with a normalization consistent with that predicted by the simulations of Evrard, Metzler, & Navarro (1996). X-ray mass estimates which employ spatially resolved temperature profiles also follow a $T_x^{3/2}$ scaling although with a normalization about 40% lower than that of the fit to the virial masses. However, the isothermal $\beta$-model and x-ray surface brightness deprojection masses follow a steeper $\propto T_x^{1.8-2.0}$ scaling. The steepness of the isothermal estimates is due to their implicitly assumed dark matter density profile of $\rho(r) \propto r^{-2}$ at large radii while observations and simulations suggest that clusters follow steeper profiles (e.g., $\rho(r) \propto r^{-2.4}$).
CITATION STYLE
Horner, D. J., Mushotzky, R. F., & Scharf, C. A. (1999). Observational Tests of the Mass‐Temperature Relation for Galaxy Clusters. The Astrophysical Journal, 520(1), 78–86. https://doi.org/10.1086/307437
Mendeley helps you to discover research relevant for your work.