Seismic Analysis of Baffle-Reinforced Elevated Storage Tank Using Finite Element Method

15Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

The sloshing phenomenon is an important field of fluid dynamics in liquid storage tanks under earthquake excitation. When the sloshing frequency gets close to the liquid tank’s natural frequency, the resulting resonance could lead to instability and even damage to structures, followed by catastrophic economic losses and environmental damages. As passive control devices, baffles are a place for liquid energy dissipation. This study uses annular and horizontal baffles to evaluate the baffles’ relative effectiveness on the elevated storage tanks’ dynamic response. The analysis results are compared with those of elevated storage tanks with no baffles. The flexible and rigid storage tank analysis is examined here, where half of the tank height is filled with liquid. The structural interaction between the liquid, the (horizontal and annular) baffle, and the elevated storage tank affected by seismic action are investigated using Abaqus software. The results confirm that using the baffles, the maximum base shear force in flexible and rigid elevated storage tanks decreases as much as 26.43% and 31.90%, respectively, and the maximum hydrodynamic pressure reduction in the tank is 50.1%.

Cite

CITATION STYLE

APA

Baghban, M. H., Tosee, S. V. R., Valerievich, K. A., Najafi, L., & Faridmehr, I. (2022). Seismic Analysis of Baffle-Reinforced Elevated Storage Tank Using Finite Element Method. Buildings, 12(5). https://doi.org/10.3390/buildings12050549

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free