Design and performance analysis of transmission line-based nanosecond pulse multiplier

15Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Conventionally, Marx generators are used for the production of short duration, high voltage pulses but since many discharge gap switches are utilized for stepping up the voltage, there are many disadvantages. Here, an alternative and much simpler technique for the multiplication of nanosecond high voltage pulses has been presented in which multiplication takes place by switching single spark gap providing voltage gain of 'nx V' where n is the subsequent number of stages. Stepped up high voltage pulse with fixed voltage gain of defined shape with fast rise time and good flat top is produced without using additional pulse-forming network. Its operation has been made repetitive by switching single spark gap. Multipurpose use, low cost, small size, light weight (weighing less than 50 kg) and portability are the additional benefits of the system. The reported nanosecond pulser has been made by cascading three stages of Blumlein. To cross check its performance the parasitic impedance of the system has been evaluated to realize its adverse effect on the voltage gain and pulse shape. Also its operation has been simulated by PSPICE circuit simulator program and good agreement has been obtained between simulated and experimental results. Applications of this pulse generator include X-ray generation, breakdown tests, ion implantation, streamer discharge studies and ultra wideband generation, among others.

Cite

CITATION STYLE

APA

Verma, R., Shyam, A., & Shah, K. G. (2006). Design and performance analysis of transmission line-based nanosecond pulse multiplier. Sadhana - Academy Proceedings in Engineering Sciences, 31(5), 597–611. https://doi.org/10.1007/BF02715916

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free