Hip joint load in relation to leg length discrepancy

24Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

Objective: Leg length discrepancy is common both in healthy subjects and after total hip arthroplasty (THA). Studies that evaluated leg length following THA have demonstrated a notable inconsistency in restoring leg length. The effects concerning joint load during gait is however not well known. The purpose of this study was to use three-dimensional (3D) gait analysis to evaluate joint load during gait with a simulated leg length discrepancy of 2 and 4 cm. Nine healthy subjects without any history of hip injury participated. Method: A 3D gait analysis (Vicon, Motion System, Oxford, England) was performed with 6 cameras and 2 force palates using a standard biomechanical gait model. Hip joint moments of force were calculated for all three degrees of motion freedom. ANOVA for repeated measurements was used for statistical calculations. Results: Abduction peak moment was signifi cantly increased at the short side (P < 0.05) but unaffected on the long side. The adduction moment decreased on the long side between 0 and 4 cm (P < 0.01) but was unaffected on the short side. The internal hip rotation moments were unchanged for both the long and the short side. The external rotation moment was unchanged on the short side and decreased between bare foot and 4 cm on the long side (P < 0.05). Conclusion: A leg length discrepancy of 2 cm or more creates biomechanical changes concerning hip joint load both on the long and the short side and that the effects are larger on the short side. The increased stress may cause problems in the long run. © 2008 Wretenberg et al.

Cite

CITATION STYLE

APA

Wretenberg, P., Hugo, A., & Broström, E. (2008). Hip joint load in relation to leg length discrepancy. Medical Devices: Evidence and Research, 1(1), 13–18. https://doi.org/10.2147/mder.s3714

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free