Oil palm plantations are one of the main keys in supporting Indonesia’s economic growth. The rising consumption needs for palm oil products make it necessary to carry out data mining activities to increase CPO production. The maturity factor of palm fruit dramatically affects the quality of the oil extraction content (CPO yield) produced. This study aims to investigate the effect of fruit ripeness on the yield of CPO by using a data mining classification method with a decision tree. The algorithm used to generate decision tree classification is the C4.5 algorithm. The implementation of the C4.5 algorithm in the study was carried out using the Rapid Miner Studio 5.2 tools. The results shows that the yield of CPO is influenced by the attributes of the condition of the long and ripe fruit, the condition of the long and overripe fruit, the normal condition of the fruit and the age of 3-6 years and the condition of the fruit of normal and age of 7-10 years. Decision tree C4.5 algorithm generates 8 rules with 4 rules showing a high production value, which means that the four rules affect the yield of CPO.
CITATION STYLE
Supriyatin, W. (2021). Palm oil extraction rate prediction based on the fruit ripeness levels using C4.5 algorithm. ILKOM Jurnal Ilmiah, 13(2), 92–100. https://doi.org/10.33096/ilkom.v13i2.714.92-100
Mendeley helps you to discover research relevant for your work.