Abstract
Epstein-Barr virus (EBV) reactivation is one of the most important infections after hematopoietic stem cell transplantation (HSCT) using haplo-identical related donors (HID). We aimed to establish a comprehensive model with machine learning, which could predict EBV reactivation after HID HSCT with anti-thymocyte globulin (ATG) for graft-versus-host disease (GVHD) prophylaxis. We enrolled 470 consecutive acute leukemia patients, 60% of them (n = 282) randomly selected as a training cohort, the remaining 40% (n = 188) as a validation cohort. The equation was as follows: Probability (EBV reactivation) = 11 + exp(-Y), where Y = 0.0250 × (age) - 0.3614 × (gender) + 0.0668 × (underlying disease) - 0.6297 × (disease status before HSCT) - 0.0726 × (disease risk index) - 0.0118 × (hematopoietic cell transplantation-specific comorbidity index [HCT-CI] score) + 1.2037 × (human leukocyte antigen disparity) + 0.5347 × (EBV serostatus) + 0.1605 × (conditioning regimen) - 0.2270 × (donor/recipient gender matched) + 0.2304 × (donor/recipient relation) - 0.0170 × (mononuclear cell counts in graft) + 0.0395 × (CD34+ cell count in graft) - 2.4510. The threshold of probability was 0.4623, which separated patients into low- and high-risk groups. The 1-year cumulative incidence of EBV reactivation in the low- and high-risk groups was 11.0% versus 24.5% (P
Author supplied keywords
Cite
CITATION STYLE
Fan, S., Hong, H. Y., Dong, X. Y., Xu, L. P., Zhang, X. H., Wang, Y., … Mo, X. D. (2023). Machine learning algorithm as a prognostic tool for Epstein-Barr virus reactivation after haploidentical hematopoietic stem cell transplantation. Blood Science, 5(1), 51–59. https://doi.org/10.1097/BS9.0000000000000143
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.