Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

41Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.

Cite

CITATION STYLE

APA

Hölzer, M., Krähling, V., Amman, F., Barth, E., Bernhart, S. H., Carmelo, V. A. O., … Marz, M. (2016). Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 6. https://doi.org/10.1038/srep34589

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free