Abstract
Detailed knowledge about laminar–turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar–turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar–turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.
Cite
CITATION STYLE
von Hoesslin, S., Stadlbauer, M., Gruendmayer, J., & Kähler, C. J. (2017). Temperature decline thermography for laminar–turbulent transition detection in aerodynamics. Experiments in Fluids, 58(9). https://doi.org/10.1007/s00348-017-2411-1
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.