Abstract
MOEA/D is a promising multi-objective evolutionary algorithm based on decomposition, and it has been used to solve many multi-objective optimization problems very well. However, there is a class of multi-objective problems, called many-objective optimization problems, but the original MOEA/D cannot solve them well. In this paper, an improved MOEA/D with optimal differential evolution (oDE) schemes is proposed, called MOEA/D-oDE, aiming to solve many-objective optimization problems. Compared with MOEA/D, MOEA/D-oDE has two distinguishing points. On the one hand, MOEA/D-oDE adopts a newly-introduced decomposition approach to decompose the many-objective optimization problems, which combines the advantages of the weighted sum approach and the Tchebycheff approach. On the other hand, a kind of combination mechanism for DE operators is designed for finding the best child solution so as to do the a posteriori computing. In our experimental study, six continuous test instances with 4-6 objectives comparing NSGA-II (nondominated sorting genetic algorithm II) and MOEA/D as accompanying experiments are applied. Additionally, the final results indicate that MOEA/D-oDE outperforms NSGA-II and MOEA/D in almost all cases, particularly in those problems that have complicated Pareto shapes and higher dimensional objectives, where its advantages are more obvious.
Author supplied keywords
Cite
CITATION STYLE
Zheng, W., Tan, Y., Fang, X., & Li, S. (2017). An improved MOEA/D with optimal DE schemes for many-objective optimization problems. Algorithms, 10(3). https://doi.org/10.3390/a10030086
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.