Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Energy harvesting and light detection are key technologies in various emerging optoelectronic applications. The high absorption capability and bandgap tunability of organic semiconductors make them promising candidates for such applications. Herein, a poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) bulk heterojunction-based organic photodiode (OPD) was reported, demonstrating dual functionality as an indoor photovoltaic (PV) and as a high-speed photodetector. This OPD demonstrated decent indoor PV performance with a power conversion efficiency (PCE) of (11.6 ± 0.5)% under a light emitting diode (LED) lamp with a luminance of 1000 lx. As a photodetector, this device exhibited a decent photoresponsivity of 0.15 A/W (green light) with an excellent linear dynamic range (LDR) of over 127 dB within the optical power range of 3.74 × 10−7 to 9.6 × 10−2 W/cm2. Furthermore, fast photoswitching behaviors could be observed with the rising/falling times of 14.5/10.4 μs and a cutoff (3 dB) frequency of 37 kHz. These results might pave the way for further development of organic optoelectronic applications. Graphical Abstract: [Figure not available: see fulltext.]

Cite

CITATION STYLE

APA

Kim, T. W., Kim, S. H., Shim, J. W., & Hwang, D. K. (2022, December 1). Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector. Frontiers of Optoelectronics. Higher Education Press Limited Company. https://doi.org/10.1007/s12200-022-00024-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free