Abstract
The lytic activity of most CD8+ MHC class I allospecific CTL generated in vitro can be inhibited by anti-CD8 antibodies. Such inhibition has led to hypotheses that CD8/class I interactions normally contribute to the triggering of CTL with low or moderate avidity Ag-specific TCR by providing those CTL with auxiliary binding avidity. However, CD8 has also been proposed to play an active signaling role in T cell activation. We have recently reported that multivalent cross-linking of CD8 on CTL precursors in MLC does appear to mediate activation signals, and induces the generation of CD8+ MHC class I allospecific CTL whose lytic activity cannot be blocked by anti-CD8 antibodies. In our present study, we have further characterized such anti-CD8 uninhibitable effector cells. These CTL are resistant to blocking of their lytic function by anti-Lyt-3 mAb as well as anti-Lyt-2 mAb, but remain sensitive to blocking by anti-LFA-1 mAb, indicating that they do use non-CD8 cell adhesion molecules during target cell recognition and lysis. As a consequence of mAb-induced multivalent CD8 cross-linking during their generation, anti-CD8 uninhibitable CTL significantly reduce their cell surface expression of CD8, which permits their identification and facilitates their purification from heterogeneous MLC populations. Such anti-CD8 uninhibitable effector cells can be maintained as stable CTL lines, in the absence of anti-CD8 mAb after the initial induction period. The in vitro generation of anti-CD8 uninhibitable CTL, which may be highly enriched for cells bearing high affinity TCR, could represent a new experimental approach to studies of TCR gene usage and repertoire, as well as a potentially important strategy for the deliberate generation of high affinity effector cells for adoptive immunotherapy.
Cite
CITATION STYLE
McCarthy, S. A., Kaldjian, E., & Singer, A. (1989). Characterization of anti-CD8-resistant cytolytic T lymphocytes induced by multivalent cross-linking of CD8 on precursor cells. The Journal of Immunology, 143(7), 2112–2119. https://doi.org/10.4049/jimmunol.143.7.2112
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.