We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, the uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed "zero-detuning"point. Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depending on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a sanity check of the experiments trying to "prove"results originating from strong coupling, such as vacuum-enhanced chemical reaction rate.
CITATION STYLE
Kansanen, K. S. U., Toppari, J. J., & Heikkilä, T. T. (2021). Polariton response in the presence of Brownian dissipation from molecular vibrations. Journal of Chemical Physics, 154(4). https://doi.org/10.1063/5.0036905
Mendeley helps you to discover research relevant for your work.