Implementation of a Bidirectional 400-800V Wireless EV Charging System

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A non-contact isolated bidirectional symmetrical resonant converter with dual active bridge as the main structure is proposed in this study. This scheme is combined with the symmetrical resonant network and integrated into an isolated bidirectional symmetrical resonant conversion circuit. The symmetrical resonance technique is used in this work to realize the voltage regulation of a wide range of output and the function of soft switching under the appropriate operating frequency; reduce the electromagnetic noise and power loss caused by hard switching of power switches in the circuit; and improve the overall converter efficiency, voltage regulation, and hard switching from conventional bidirectional converters. In addition, a pair of non-contact loosely coupled inductors (wireless coils) is used to replace the conventional transformer to transfer the bidirectional energy wirelessly. The digital signal processor TMS320F28335 is the control core of the system in this study. The proposed converter with DC grid input voltage is set to 400 V, and the EV battery side is set to 670-800 V. The rated power capacity of the bidirectional wireless charger is 2 kW. Besides, the proposed bidirectional wireless EV charger has CC-CV charging function to achieve the EV charging requirement. Finally, the maximum efficiency of forward charging mode (grid to vehicle [G2V; 400 V charge to 800 V]) can reach 90.2% while that of reverse discharging mode (vehicle to grid [V2G; 800V discharge to 400V]) can reach 91.4%.

Cite

CITATION STYLE

APA

Wu, S. T., & Chiu, Y. W. (2024). Implementation of a Bidirectional 400-800V Wireless EV Charging System. IEEE Access, 12, 26667–26682. https://doi.org/10.1109/ACCESS.2024.3366997

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free