Investigation on the Crashworthiness Performance of Thin-Walled Multi-Cell PLA 3D-Printed Tubes: A Multi-Parameter Analysis

19Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

The effect of printing parameters (nozzle diameter, layer height, nozzle temperature, and printing speed), dimensions (wall thickness), and filament material on the crashworthiness performance of 3D-printed thin-walled multi-cell structures (TWMCS) undergoing quasi-static compression is presented. The ideal combination of parameters was determined by employing the Signal-to-Noise ratio (S/N), while Analysis of Variance (ANOVA) was utilized to identify the significant parameters and assess their impact on crashworthiness performance. The findings indicated that the ideal parameters for the specific energy absorption (SEA) consisted of a nozzle diameter of 0.6 mm, layer height of 0.3 mm, nozzle temperature of 220 °C, printing speed of 90 mm/s, wall thickness of 1.6 mm, and PLA(+) filament material. Afterward, the optimal parameters for crushing force efficiency (CFE) included a nozzle diameter of 0.8 mm, layer height of 0.3 mm, nozzle temperature of 230 °C, print speed of 90 mm/s, wall thickness of 1.6 mm, and PLA(ST) filament material. The optimum parameter to minimize manufacturing time is 0.3 mm for layer height and 90 mm/s for printing speed. This research presents novel opportunities for optimizing lightweight structures with enhanced energy absorption capacities. These advancements hold the potential to elevate passenger safety and fortify transportation systems. By elucidating the fundamental factors governing the crashworthiness of thin-walled multi-cell PLA 3D-printed tubes, this study contributes to a deeper understanding of the field.

Cite

CITATION STYLE

APA

Hidayat, D., Istiyanto, J., Sumarsono, D. A., Kurniawan, F., Ardiansyah, R., Wandono, F. A., & Nugroho, A. (2023). Investigation on the Crashworthiness Performance of Thin-Walled Multi-Cell PLA 3D-Printed Tubes: A Multi-Parameter Analysis. Designs, 7(5). https://doi.org/10.3390/designs7050108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free