PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1–PUF and SYGL-1–PUF partnerships and their molecular activities in their natural context – nematode stem cells. We confirm LST-1–PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1–PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1–PUF and Nanos–Pumilio reveals fundamental molecular differences, making LST-1–PUF a distinct paradigm for PUF partnerships.
CITATION STYLE
Ferdous, A. S., Costa Dos Santos, S. J., Kanzler, C. R., Shin, H., Carrick, B. H., Crittenden, S. L., … Kimble, J. (2023). The in vivo functional significance of PUF hub partnerships in C. elegans germline stem cells. Development (Cambridge), 150(9). https://doi.org/10.1242/dev.201705
Mendeley helps you to discover research relevant for your work.