Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro-Rotaxanes” from High-Molecular-Weight Axle and Wheel Components

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10–60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.

Cite

CITATION STYLE

APA

Ebe, M., Soga, A., Fujiwara, K., Ree, B. J., Marubayashi, H., Hagita, K., … Satoh, T. (2023). Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro-Rotaxanes” from High-Molecular-Weight Axle and Wheel Components. Angewandte Chemie - International Edition, 62(35). https://doi.org/10.1002/anie.202304493

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free