Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation

24Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Use of crude ligninase of bacterial origin is one of the most promising ways to improve the practical biodegradation of lignocellulosic biomass. However, lignin is composed of diverse monolignols with different abundance levels in different plant biomass and requires different proportions of ligninase to realize efficient degradation. To improve activity and reduce cost, the simultaneous submerged fermentation of laccase and lignin peroxidase (LiP) from a new bacterial strain, Streptomyces cinnamomensis, was studied by adopting formulation design, principal component analysis, regression analysis and unconstrained mathematical programming. Results: The activities of laccase and LiP from S. cinnamomensis cultured with the optimal medium formulations were improved to be five to eight folders of their initial activities, and the measured laccase:LiP activity ratios reached 0.1, 0.4 and 1.7 when cultured on medium with formulations designed to produce laccase:LiP complexes with theoretical laccase:LiP activity ratios of 0.05 to 0.1, 0.5 to 1 and 1.1 to 2. Conclusion: Both the laccase and LiP activities and also the activity ratio of laccase to LiP could be controlled by the medium formulation as designed. Using a crude laccase-LiP complex with a specially designed laccase:LiP activity ratio has the potential to improve the degradation of various plant lignins composed of diverse monolignols with different abundance levels. © 2012 Jing and Wang; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Jing, D., & Wang, J. (2012). Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. Biotechnology for Biofuels, 5. https://doi.org/10.1186/1754-6834-5-15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free