Towards a low CO 2 emission building material employing bacterial metabolism (1/2): the bacterial system and prototype production

25Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

The production of concrete for construction purposes is a major source of anthropogenic CO 2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporo-sarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.

Cite

CITATION STYLE

APA

Røyne, A., Phua, Y. J., Le, S. B., Eikjeland, I. G., Josefsen, K. D., Markussen, S., … Wentzel, A. (2019). Towards a low CO 2 emission building material employing bacterial metabolism (1/2): the bacterial system and prototype production. PLoS ONE, 14(4). https://doi.org/10.1371/journal.pone.0212990

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free