Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant

536Citations
Citations of this article
426Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sustainable use of nanotechnology for agricultural practice requires an understanding of the plant's life cycle and potential toxicological impacts of nanomaterials. The main objective of this study was to compare the impact of TiO2 and ZnO nanoparticles of similar size (25 ± 3.5 nm) over a range of concentrations (0 to 1000 mg kg-1) on translocation and accumulation of nanoparticles in different plant sections; as well as to establish physiological impact on tomato plants. The results indicated that there is a critical concentration of TiO2 and ZnO nanoparticles upto which the plant's growth and development are promoted; with no improvement beyond that. Aerosol mediated application was found to be more effective than the soil mediated application on the uptake of the nanoparticles was in plants. A mechanistic description of nanoparticle uptake, translocation and resultant plant response is unraveled. The present investigation demonstrates the concept of nanoparticle farming by understanding plant-nanoparticle interaction and biodistribution.

Cite

CITATION STYLE

APA

Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12), 1584–1594. https://doi.org/10.1039/c5mt00168d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free