Background. Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual responses vary widely. Objective. The study objective was to investigate the extent to which individual characteristics before treatment predict improved use of the more affected arm following CI therapy. Design. This study was a retrospective analysis of 47 people who had chronic (> 6 months) mild to moderate upper extremity hemiparesis and were consecutively enrolled in 2 CI therapy randomized controlled trials. Methods. An enhanced probabilistic neural network model predicted whether individuals showed a low, medium, or high response to CI therapy, as measured with the Motor Activity Log, on the basis of the following baseline assessments: Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, Motor Activity Log, and Montreal Cognitive Assessment. Then, a neural dynamic classification algorithm was applied to improve prognostic accuracy using the most accurate combination obtained in the previous step. Results. Motor ability and tactile sense predicted improvement in arm use for daily activities following intensive upper extremity rehabilitation with an accuracy of nearly 100%. Complex patterns of interaction among these predictors were observed. Limitations. The fact that this study was a retrospective analysis with a moderate sample size was a limitation. Conclusions. Advanced machine learning/classification algorithms produce more accurate personalized predictions of rehabilitation outcomes than commonly used general linear models.
CITATION STYLE
Rafiei, M. H., Kelly, K. M., Borstad, A. L., Adeli, H., & Gauthier, L. V. (2019). Predicting improved daily use of the more affected arm poststroke following constraint-induced movement therapy. Physical Therapy, 99(12), 1667–1678. https://doi.org/10.1093/ptj/pzz121
Mendeley helps you to discover research relevant for your work.