Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway

43Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Angelica sinensis (Oliv.) Diels is a widely-used traditional Chinese herbal medicine in treating osteoporosis. Ligustilide (LIG) is the main component of A. sinensis and is considered to be the most effective biologically active ingredient in this plant. LIG has been found to have multiple pharmacological activities, such as anti-atherosclerosis, neuroprotection, anticancer, anti-inflammatory and analgesic. However, little is known regarding its anti-osteoporotic effects. The aims of this study were to investigate any protective effect of LIG on bone formation. The results showed that LIG significantly ameliorated inhibition of bone formation in zebrafish caused by prednisolone. LIG promoted osteoblast differentiation, including that of the pre-osteoblastic cell line MC3T3-E1 and bone marrow mesenchymal stem cells. LIG greatly improved the viability of MC3T3-E1 cells exposed to H 2 O 2 , attenuated H 2 O 2 -induced apoptosis and increased the expression of Bcl-2. Furthermore, LIG treatment lead to marked activation of phosphorylated EGFR and ERK1/2. These effects could be obviously inhibited by blocking GPR30 signaling with the specific inhibitor G15. Collectively, the results reveal that GPR30 is a positive switch for LIG to increase bone formation via regulation of EGFR, and these results provide evidence for the potential of LIG to treat osteoporosis.

Cite

CITATION STYLE

APA

Yang, F., Lin, Z. W., Huang, T. Y., Chen, T. T., Cui, J., Li, M. Y., & Hua, Y. Q. (2019). Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43518-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free