Integration profiling of gene function with dense maps of transposon integration

53Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding how complex networks of genes integrate to produce dividing cells is an important goal that is limited by the difficulty in defining the function of individual genes. Current resources for the systematic identification of gene function such as siRNA libraries and collections of deletion strains are costly and organism specific. We describe here integration profiling, a novel approach to identify the function of eukaryotic genes based upon dense maps of transposon integration. As a proof of concept, we used the transposon Hermes to generate a library of 360,513 insertions in the genome of Schizosaccharomyces pombe. On average, we obtained one insertion for every 29 bp of the genome. Hermes integrated more often into nucleosome free sites and 33% of the insertions occurred in ORFs. We found that ORFs with low integration densities successfully identified the genes that are essential for cell division. Importantly, the nonessential ORFs with intermediate levels of insertion correlated with the nonessential genes that have functions required for colonies to reach full size. This finding indicates that integration profiles can measure the contribution of nonessential genes to cell division. While integration profiling succeeded in identifying genes necessary for propagation, it also has the potential to identify genes important for many other functions such as DNA repair, stress response, and meiosis. © 2013 by the Genetics Society of America.

Cite

CITATION STYLE

APA

Guo, Y., Park, J. M., Cui, B., Humes, E., Gangadharan, S., Hung, S., … Levin, H. L. (2013). Integration profiling of gene function with dense maps of transposon integration. Genetics, 195(2), 599–609. https://doi.org/10.1534/genetics.113.152744

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free