Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer through GTPase Signaling Pathways

  • Padavano J
  • Henkhaus R
  • Chen H
  • et al.
N/ACitations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RAS G12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis.

Cite

CITATION STYLE

APA

Padavano, J., Henkhaus, R. S., Chen, H., Skovan, B. A., Cui, H., & Ignatenko, N. A. (2015). Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer through GTPase Signaling Pathways. Cancer Growth and Metastasis, 8s1, CGM.S29407. https://doi.org/10.4137/cgm.s29407

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free