Distinguishing features and identification criteria for K-dioctahedral 1M micas (Illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data

88Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

Abstract

A representative collection of K-dioctahedral 1M micas ranging in composition from (Mg, Fe)-poor illites to aluminoceladonites through Mg-rich illites (Fe-poor varieties) and from Fe-bearing, Mg-rich illites to celadonites through Fe-illites, Al-glauconites and glauconites (Fe-bearing varieties) was studied by Fourier-transform infrared (FTIR) spectroscopy in the middle-infrared region. Analysis and comparison of the relationships between the band positions and cation compositions of Fe-poor and Fe-bearing K-dioctahedral micas provided a generalized set of FTIR identification criteria that include the band positions and profiles in the regions of Si–O bending, Si–O stretching, and OH-stretching vibrations. FTIR data allow unambiguous identification of illites, aluminoceladonites, and celadonites, as well as distinction between Fe-illites and illites proper, as well as between Al-glauconites and glauconites. Specifically, a sharp maximum from the AlOHMg stretching vibration at ~3600 cm−1, the presence of a MgOHMg stretching vibration at 3583–3585 cm−1, as well as characteristic band positions in the Si–O bending (435–439, 468–472 and 509–520 cm−1) and stretching regions (985–1012 and 1090–1112 cm−1) are clearly indicative of aluminoceladonite. The distinction between Fe-illites and Al-glauconites, which have similar FTIR features, requires data on cation composition and unit-cell parameters.

Cite

CITATION STYLE

APA

Zviagina, B. B., Drits, V. A., & Dorzhieva, O. V. (2020). Distinguishing features and identification criteria for K-dioctahedral 1M micas (Illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data. Minerals, 10(2). https://doi.org/10.3390/min10020153

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free